Erratum: "Strain and relaxation effects in InAsP/InP multiple quantum well optical modulator devices grown by metal-organic vapor phase epitaxy" [J. Appl. Phys. 81, 1905 (1997)]

R. Y.-F. Yip, A. Aït-Ouali, A. Bensaada, P. Desjardins, M. Beaudoin, L. Isnard, J. L. Brebner, J. F. Currie, and R. A. Masut Groupe de recherche en physique et technologie des couches minces (GCM), Département de génie physique, École Polytechnique de Montréal, C.P. 6079, succ. "Centre-Ville," Montréal QC, H3C 3A7 Canada

[S0021-8979(97)08124-3]

Please note the following corrections.

- (1) The incorrect version of Table I was printed on page 1906 [(J. Appl. Phys. **81**, 1905 (1997)]. The critical limits (hc) quoted in the text are correct while the ones described in the table and table caption (hc_1 and hc_2) should be ignored. The correct table and caption should read as follows.
- (2) There is a typographical error in Eqs. (A4) and (A5). In these equations, L_0 should be replaced by $L_0/2$.

TABLE I. Sample listing and structural parameters obtained from high-resolution (115+/115-) and (004) XRD scans. Using mismatches measured with respect to InP, the fully relaxed, free-standing lattice parameter of the InAsP quantum well sections was deduced from a knowledge of the lattice parameters for the strain-distorted unit cell. This was subsequently used to compute the As composition of the wells, biaxial well strain, and relaxation (*R*). h/hc is the ratio of the multi-layer structure thickness to the Matthews–Blakeslee critical limit for a layer of the average composition.

	Multi-layer structure	Critical	In-plane mismatch		Biaxial strain in wells		R		
Sample	Multi-quantum well structure	Cap layer	h/hc	[110]	[110]	[110]	[110]	[110]	[110]
mod07	500 nm InP	300 nm	_	_	_	_	_	_	-
mod03	25×(9.4 nm InAs _{0.044} P _{0.956} /9.4 nm InP)	280 nm	1.9	<0.001%		-0.14%		<1%	
mod05	25×(9.8 nm InAs _{0.100} P _{0.900} /9.8 nm InP)	290 nm	5.2	< 0.001%		-0.31%		<1%	
mod06	25×(10.3 nm InAs _{0.156} P _{0.844} /10.3 nm InP)	310 nm	9.3	0.012%	0.003%	-0.49%		5%	1%
mod04	25×(9.8 nm InAs _{0.264} P _{0.736} /9.8 nm InP)	290 nm	17	0.079%	0.034%	-0.77%	-0.81%	20%	9%
mod02	50×(11.9 nm InAs _{0.135} P _{0.865} /11.9 nm InP)	1550 nm	18	0.050%	0.024%	-0.38%	-0.41%	23%	11%

0021-8979/97/82(12)/6372/1/\$10.00